Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies

Identifieur interne : 000339 ( Main/Repository ); précédent : 000338; suivant : 000340

The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies

Auteurs : RBID : Pascal:14-0104296

Descripteurs français

English descriptors

Abstract

This paper examines the use of materials, in particular metals, in six low-carbon energy technologies of the European Union's Strategic Energy Technology Plan (SET-Plan), namely nuclear, solar, wind, bioenergy, carbon capture and storage and electricity grids. The projected average annual demand for metals in the SET-Plan technologies for the decades up to 2020 and 2030 is compared to the known global production volume in 2010. From an initial inventory of over 50 metals, 14 metals were identified that will require 1% or more of the 2010 world supply per annum between 2020 and 2030. These 14 metals are cadmium, dysprosium, gallium, hafnium, indium, molybdenum, neodymium, nickel, niobium, selenium, silver, tellurium, tin and vanadium. These metals were examined further by analysing the effect of market and geo-political factors of supply and demand, which highlighted five metals to represent a high risk to large-scale technology deployment, namely: neodymium, dysprosium, indium, tellurium and gallium. The five metals were further analysed with respect to the wind and solar sectors, showing that the demand of these metals could increase significantly depending on future sub-technology choices. Mitigation strategies to alleviate potential shortages are also discussed, e.g. extending primary output; re-use, re-cycling and waste reduction; and substitution.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0104296

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies</title>
<author>
<name sortKey="Moss, R L" uniqKey="Moss R">R. L. Moss</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Energy and Transport, Joint Research Centre, European Commission, Westerduinweg 3</s1>
<s2>1755 LE Petten</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1755 LE Petten</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tzimas, E" uniqKey="Tzimas E">E. Tzimas</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Energy and Transport, Joint Research Centre, European Commission, Westerduinweg 3</s1>
<s2>1755 LE Petten</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1755 LE Petten</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kara, H" uniqKey="Kara H">H. Kara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Oakdene Hollins Ltd., Pembroke Court, 22-28 Cambridge Street</s1>
<s2>Aylesbury, Buckinghamshire HP20 1RS</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Aylesbury, Buckinghamshire HP20 1RS</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Willis, P" uniqKey="Willis P">P. Willis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Oakdene Hollins Ltd., Pembroke Court, 22-28 Cambridge Street</s1>
<s2>Aylesbury, Buckinghamshire HP20 1RS</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Aylesbury, Buckinghamshire HP20 1RS</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kooroshy, J" uniqKey="Kooroshy J">J. Kooroshy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>The Hague Centre for Strategic Studies, Lange Voorhout 16</s1>
<s2>2514 EE The Hague</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2514 EE The Hague</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0104296</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0104296 INIST</idno>
<idno type="RBID">Pascal:14-0104296</idno>
<idno type="wicri:Area/Main/Corpus">000002</idno>
<idno type="wicri:Area/Main/Repository">000339</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0301-4215</idno>
<title level="j" type="abbreviated">Energy policy</title>
<title level="j" type="main">Energy policy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Energy policy</term>
<term>Industrial policy</term>
<term>Lanthanide</term>
<term>Material recovery</term>
<term>Power production</term>
<term>Rare earth metal alloy</term>
<term>Reliability of supply</term>
<term>Risk analysis</term>
<term>Shortage</term>
<term>Supply demand balance</term>
<term>Wasteless technology</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Production énergie</term>
<term>Technologie propre</term>
<term>Lanthanide alliage</term>
<term>Lanthanide</term>
<term>Sécurité approvisionnement</term>
<term>Offre et demande</term>
<term>Pénurie</term>
<term>Analyse risque</term>
<term>Récupération matériau</term>
<term>Politique énergétique</term>
<term>Politique industrielle</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Technologie propre</term>
<term>Offre et demande</term>
<term>Pénurie</term>
<term>Politique énergétique</term>
<term>Politique industrielle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper examines the use of materials, in particular metals, in six low-carbon energy technologies of the European Union's Strategic Energy Technology Plan (SET-Plan), namely nuclear, solar, wind, bioenergy, carbon capture and storage and electricity grids. The projected average annual demand for metals in the SET-Plan technologies for the decades up to 2020 and 2030 is compared to the known global production volume in 2010. From an initial inventory of over 50 metals, 14 metals were identified that will require 1% or more of the 2010 world supply per annum between 2020 and 2030. These 14 metals are cadmium, dysprosium, gallium, hafnium, indium, molybdenum, neodymium, nickel, niobium, selenium, silver, tellurium, tin and vanadium. These metals were examined further by analysing the effect of market and geo-political factors of supply and demand, which highlighted five metals to represent a high risk to large-scale technology deployment, namely: neodymium, dysprosium, indium, tellurium and gallium. The five metals were further analysed with respect to the wind and solar sectors, showing that the demand of these metals could increase significantly depending on future sub-technology choices. Mitigation strategies to alleviate potential shortages are also discussed, e.g. extending primary output; re-use, re-cycling and waste reduction; and substitution.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0301-4215</s0>
</fA01>
<fA02 i1="01">
<s0>ENPYAC</s0>
</fA02>
<fA03 i2="1">
<s0>Energy policy</s0>
</fA03>
<fA05>
<s2>55</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MOSS (R. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TZIMAS (E.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KARA (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WILLIS (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KOOROSHY (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Energy and Transport, Joint Research Centre, European Commission, Westerduinweg 3</s1>
<s2>1755 LE Petten</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Oakdene Hollins Ltd., Pembroke Court, 22-28 Cambridge Street</s1>
<s2>Aylesbury, Buckinghamshire HP20 1RS</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>The Hague Centre for Strategic Studies, Lange Voorhout 16</s1>
<s2>2514 EE The Hague</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>556-564</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16417</s2>
<s5>354000506378190510</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0104296</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Energy policy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper examines the use of materials, in particular metals, in six low-carbon energy technologies of the European Union's Strategic Energy Technology Plan (SET-Plan), namely nuclear, solar, wind, bioenergy, carbon capture and storage and electricity grids. The projected average annual demand for metals in the SET-Plan technologies for the decades up to 2020 and 2030 is compared to the known global production volume in 2010. From an initial inventory of over 50 metals, 14 metals were identified that will require 1% or more of the 2010 world supply per annum between 2020 and 2030. These 14 metals are cadmium, dysprosium, gallium, hafnium, indium, molybdenum, neodymium, nickel, niobium, selenium, silver, tellurium, tin and vanadium. These metals were examined further by analysing the effect of market and geo-political factors of supply and demand, which highlighted five metals to represent a high risk to large-scale technology deployment, namely: neodymium, dysprosium, indium, tellurium and gallium. The five metals were further analysed with respect to the wind and solar sectors, showing that the demand of these metals could increase significantly depending on future sub-technology choices. Mitigation strategies to alleviate potential shortages are also discussed, e.g. extending primary output; re-use, re-cycling and waste reduction; and substitution.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06A01B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06A01C5</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Production énergie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Power production</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Producción energía</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Technologie propre</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Wasteless technology</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Tecnología limpia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Lanthanide alliage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Rare earth metal alloy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Lantánido aleación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Lanthanide</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Lanthanide</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Lantánido</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Sécurité approvisionnement</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Reliability of supply</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Offre et demande</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Supply demand balance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Oferta y demanda</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Pénurie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Shortage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Penuria</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Analyse risque</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Risk analysis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Análisis riesgo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Récupération matériau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Material recovery</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Recuperación material</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Politique énergétique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Energy policy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Política energética</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Politique industrielle</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Industrial policy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Política industrial</s0>
<s5>11</s5>
</fC03>
<fN21>
<s1>139</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000339 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000339 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0104296
   |texte=   The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024